
ESSNET-SDC Deliverable

Blocking Methods for Microdata Protection

Josep Domingo-Ferrer
Universitat Rovira i Virgili,

Dept. of Computer Engineering and Maths,
Av. Päısos Catalans 26,

43007 Tarragona, Catalonia
e-mail josep.domingo@urv.cat

October 23, 2008

Contents

1 Introduction 1
1.1 Contribution and plan of this report 2

2 A blocking method based on clustering 3
2.1 2d-tree generation . 3
2.2 Fusing low-cardinality leaves . 5
2.3 MDAV microaggregation . 6

3 Experimental results 8
3.1 On the block size L . 8
3.2 On the dimensionality d . 9
3.3 The influence of blocking . 10

4 Conclusions 14

1

List of Figures

2.1 Example of a quadtree partition of a data set of 500 elements
with L = 50. 5

2.2 Example of low-cardinality leaf detection with k = 10. High-
lighted squares indicate low-cardinality leaves. 6

2.3 Example of centroid computation and leaf fusion. The lines link
the leaves to be fused . 7

3.1 Number of useful blocks for a data set with n = 2.5 · 106 records,
d = 2 attributes and minimum block size k = 3. The continuous
line represents univariate blocking while the dashed line repre-
sents 2d-tree based blocking . 9

3.2 SSE evolution for different values of L applied to 500000, 1000000,
1500000 and 2000000 records with 2 dimensions for k = 3. The
continuous line represents the univariate blocking approach; the
dashed line represents the 2d-tree blocking approach. 10

3.3 SSE evolution for different values of L and different numbers of
records using k = 3 and the 2d-tree approach before microaggre-
gation . 11

3.4 SSE evolution for different values of L and different numbers of
records using k = 3 and the univariate blocking approach before
microaggregation . 12

3.5 SSE evolution for different d values applied to 2500000 records
with dimensions from 2 to 10, for k = 3. L = 10000 is taken.
The continuous line represents the univariate blocking approach,
the dashed line represents the 2d-tree blocking approach. 13

2

List of Tables

2.1 Notation used in this report . 4
2.2 Structure of a node in the 2d tree 4

3.1 Number of blocks for a data set with n = 2.5 · 106 records, d = 2
attributes and minimum block size k = 3 8

3.2 SSE of the microaggregated data set for k = 3 and 2, 3, 4, 5 and
10 dimensions. The data set has 2.5 million records. 11

3.3 SSE results for EIA data set (4096 records and d = 11). 11

3

Abstract

Blocking is a well-known technique used to partition a set of records into several
subsets of manageable size. The standard approach to blocking is to split the
records according to the values of one or several attributes (called blocking
attributes). This report presents a new blocking method based on 2d-trees for
intelligently partitioning very large data sets. Blocking makes sense whenever
the treatment to be used on the data set is of complexity higher than linear. We
take here microaggregation (which has quadratic complexity) as a treatment,
but other superlinear treatments can benefit from the blocking method described
(like record linkage, also of quadratic complexity).

Chapter 1

Introduction

Some SDC methods for microdata protection are very time consuming when
very large surveys have to be protected. Some SDC microdata methods take
linear time, while others (like microaggregation or optimal recoding) take time
quadratic or, more generally, superlinear in the data set size. Also, disclo-
sure risk assessment for microdata is often superlinear (e.g. record linkage is
quadratic).

Blocking is a popular approach to applying superlinear methods to large
microdata sets. The idea is to split large data sets into smaller pieces (blocks) of
manageable size that can be separately treated in a reasonable time. Blocking
should be done in such a way that its impact on data utility is as small as
possible.

Usual blocking procedures involve selecting a number of variables in the data
set, called blocking variables. Then records are sorted by the blocking variables
and the sorted data set is divided as many times as needed to obtain manageable
subsets. Normally, a block is defined as a subset of records sharing a particular
combination of values of the blocking variables. Building blocks from blocking
variables has several drawbacks:

• The choice of blocking variables may not be obvious;

• Blocks obtained in this way may fail to adapt to the distribution of data
(very heterogeneous blocks);

• The size of some blocks may be too small or too big for some purposes,
e.g. privacy preservation.

Some blocking approaches based on clustering theory have been proposed
in the literature [2, 9] mainly designed for use with record linkage. They aim
at obtaining blocks that are more similar to the natural clusters present in the
data. We propose in this report this type of blocking via clustering and, more
specifically, via 2d trees. In [10], we were able to show that 2d trees could be
used to get very homogeneous blocks and thus reduce information loss caused
by blocking.

1

CHAPTER 1. INTRODUCTION 2

1.1 Contribution and plan of this report

In this report, we propose a method based on a 2d-tree for dividing very large
data sets into a number of smaller ones. We show the usefulness of the proposed
blocking for efficiently microaggregating very large data sets. Other superlinear
treatments on the blocks, such as record linkage, can take advantage of this
blocking procedure.

The rest of the report is organized as follows. In Chapter 2 our method is
detailed. Next, Chapter 3 shows the experimental results. Finally Chapter 4 is
a conclusion.

Chapter 2

A blocking method based
on clustering

We are addressing a problem that consists in dividing a large data set D into a
number of smaller ones D1, D2, . . . DG. We claim that in order to maintain the
spatial relations that may exist between the elements in the original data set,
it is necessary to consider several dimensions for partitioning the data set into
smaller ones. Thus, we propose to use a very well-known data structure such
as a 2d-tree for dividing the data taking into account a user-definable number
d of dimensions.

We want to divide the original data in such a way that separately treating
each block is not significantly worse in terms of quality than treating the entire
data set.

The treatment considered in this report is microaggregation. In microaggre-
gation, the quality of the microaggregated data is measured by the within-groups
sum of squares SSE (the lower it is, the better is the quality of masked data).

Specifically, the MDAV microaggregation heuristic [4, 6, 7] has been used to
obtain the empirical results presented in Chapter 3.

A complete explanation about how to design and implement a 2d-tree can
be found in [3]; thus, we will only elaborate on the most relevant aspects of the
2d-tree generation and the other main steps of the method.

2.1 2d-tree generation

The first step of our method consists of building a 2d-tree. This kind of structure
is commonly found in image analysis with d = 2 (i.e. Quadtree) and virtual
reality or satellite image analysis with d = 3 (i.e. Octree).

The number of dimensions d is a parameter to our method and must be
defined by the user. Although any value of d is possible, it is not a good idea
to use high values of d because the number of children of each node in the tree

3

CHAPTER 2. A BLOCKING METHOD BASED ON CLUSTERING 4

Table 2.1: Notation used in this report
Symbol Meaning

d Number of dimensions
D A data set

D1, D2, . . . DG The generated blocks
Eg Number of elements in group g
k Min. elements per leaf
L Max. elements per leaf
n Number of records in D

Table 2.2: Structure of a node in the 2d tree
struct node
{

int nodeID; //Node identifier
int level; //Depth of the node
int Nrecords; //Number of records
int *records; //Reference to the records
int Nchildren; //Number of children
node *children; //A reference to the children
node *parent; //The parent node
float **dimLimits; //The dimensional limits

};

grows exponentially with d (i.e. each node has 2d children). Figure 2.1 shows a
typical partition obtained by applying a 2d-tree with d equaling 2.

In Table 2.2 the structure of a node is shown using a “C”-like syntax. The
most relevant element in the node structure of a 2d-tree is the dimension
limits vector. The dimension limits vector contains an upper-bound and a
lower-bound for each dimension. Thus, all the records contained in a node must
fall inside these limits.

Initially, the 2d-tree consists of a single leaf and it is divided into 2d leaves
if the number of records within the leaf upper and lower bounds is greater than
L. This division of the leaves into 2d children leaves is recursively applied until
all leaves have a maximum number of records no greater than L within their
lower and upper bounds.

The dimension limits vectors of child nodes are computed as follows. The
range of each of the d dimensions in the parent node is split into two subranges:
one from the parent’s lower bound for that dimension to the midpoint of the
parent’s range and another from the midpoint of the parent’s range to the
parent’s upper bound. This is done for all d dimensions, so that eventually 2d

d-dimensional subranges are obtained, each of which is assigned to a child node.
There are some computational issues which deserve a comment:

• Each node in the 2d-tree must know which records fall inside the space

CHAPTER 2. A BLOCKING METHOD BASED ON CLUSTERING 5

Figure 2.1: Example of a quadtree partition of a data set of 500 elements with
L = 50.

region it represents. However, each record is not really stored in terms of
the value of all its dimensions; instead, a reference to its position (i.e. an
ordinal) in the original data set is stored. This results in a better use of
the physical memory.

• No distance computations are needed during the generation of the 2d-tree;
only simple and computationally cheap comparisons are required.

2.2 Fusing low-cardinality leaves

Once the 2d-tree is generated, we must pay attention to its leaves. By construc-
tion, the number of elements in each leaf will not exceed L. However, we must
guarantee the number of elements in each leaf to be, at least, k because this is a
constraint imposed by microaggregation. To that end, we first detect the leaves
with low-cardinality (i.e. with less than k elements) as shown in Figure 2.2.
Then the centroid Cg of each non-empty leaf g is computed as

Cg =
∑ Eg

i=0x
g
i

Eg
, (2.1)

where xg
i is the i−th record of leaf g and Eg is the number of records in the leaf.

After computing the centroids, the closest centroid to each low-cardinality
leaf centroid is found and the corresponding leaves are fused as shown in Fig-
ure 2.3. This process is repeated until no low-cardinality leaves are left. At the
end of this second step, the records in each remaining non-empty leaf form a
block. Let the resulting blocks be D1, D2, · · · , DG.

CHAPTER 2. A BLOCKING METHOD BASED ON CLUSTERING 6

Figure 2.2: Example of low-cardinality leaf detection with k = 10. Highlighted
squares indicate low-cardinality leaves.

2.3 MDAV microaggregation

In order to demonstrate the usefulness of the proposed blocking scheme, we
apply MDAV [4, 6, 7] microaggregation algorithm to the block of records Di

obtained from each non-empty leaf.
The within-groups sum of squares SSEDi values obtained from the applica-

tion of MDAV to each block Di, for i = 1, · · · , G. are accumulated to obtain
the overall SSE, which is the measure that will be used to evaluate the impact
of blocking on the quality of microaggregation.

CHAPTER 2. A BLOCKING METHOD BASED ON CLUSTERING 7

Figure 2.3: Example of centroid computation and leaf fusion. The lines link the
leaves to be fused

Chapter 3

Experimental results

The experiments carried out consist of microaggregating a large microdata set
using: i) univariate blocking by a single blocking variable (see Chapter 1); ii)
2d-tree based blocking.

In order to compare our method with the plain univariate blocking ap-
proach we have generated large data sets. Attribute values were drawn from
the [−10000, 10000] range by simple random sampling. Given a block size L,
plain univariate blocking of a data set with n records divides the range of the
blocking attribute into n/L equal intervals; then the records whose blocking
attribute falls into the i-th interval are included in the i-th block.

The number of records in the simulated data sets ranged from n = 100000
to n = 2500000, and the number of dimensions d ranged from 2 to 10.

In Section 3.3 we analyze the influence of blocking over SSE by studying its
effects on a small data set that can be microaggregated without blocking.

3.1 On the block size L

The (maximum) block size L is an important parameter that must be tuned by
the user. Table 3.1 shows that, while plain univariate blocking always yields n/L
blocks, the 2d-tree method described in this report results in a number of blocks
higher than n/L. Certainly, there are empty blocks among those generated by
the 2d-tree methods. However, if we look only at the useful blocks, their number
is still higher than n/L, as shown in Figure 3.1.

Table 3.1: Number of blocks for a data set with n = 2.5 · 106 records, d = 2
attributes and minimum block size k = 3

L 500 1000 2000 5000 10000

Univ. block. 5000 2500 1250 500 250

2d-tree 16384 4096 4096 1024 1024

8

CHAPTER 3. EXPERIMENTAL RESULTS 9

Figure 3.1: Number of useful blocks for a data set with n = 2.5 · 106 records,
d = 2 attributes and minimum block size k = 3. The continuous line represents
univariate blocking while the dashed line represents 2d-tree based blocking

Since the purpose of blocking is to be able to apply a superlinear treatment
on each of the resulting blocks, the sizes of the latter should not be too dif-
ferent. If the superlinear treatment is microaggregation, blocking with similar
block sizes should not cause any dramatic increase of the within-group sum of
squares SSE. Our 2d-tree blocking achieves a trade-off between size balance and
SSE after microaggregation. For MDAV microaggregation, Figure 3.2 shows
that the SSE is actually much lower than the one obtained with univariate
blocking: the reason is that our method yields blocks whose records are much
more homogeneous than those in the blocks obtained by arbitrarily selecting
one blocking attribute.

In order to analyze the behavior of L we have studied how the obtained SSE
evolves depending on the number of records and the blocking technique used.
Specifically, Figure 3.3 shows that quite similar values of SSE are obtained for
a given L whatever the number of records is when the blocking method used is
based on a 2d-tree. On the other hand, Figure 3.4 shows that SSE grows with
the number of records when the univariate blocking is used, specially when L is
small.

3.2 On the dimensionality d

The dimensionality d is a key factor in our algorithm because the number of
leaves/blocks exponentially increases with d. In fact, as d increases, the ad-
vantage of our method over univariate blocking in terms of block homogeneity
dramatically increases.

Figure 3.5 and Table 3.2 show the evolution of SSE for different values of
dimensionality of the data set. It can be observed that both blocking techniques

CHAPTER 3. EXPERIMENTAL RESULTS 10

Figure 3.2: SSE evolution for different values of L applied to 500000, 1000000,
1500000 and 2000000 records with 2 dimensions for k = 3. The continuous
line represents the univariate blocking approach; the dashed line represents the
2d-tree blocking approach.

result in a growing of the SSE of the microaggregated data set. However, the
microaggregation with the 2d-tree blocking method always outputs a lower SSE.

3.3 The influence of blocking

In the previous sections we have analyzed the differences between univariate
blocking and our proposed 2d-tree based blocking over very large data sets. As
explained in Chapter 1, blocking is necessary when working with large data sets.
However, it can unintentionally break some natural clusters during the partition
of the space. Thus, the SSE obtained after blocking could in principle be worse
than the SSE without blocking.

If we take a small data set that can be microaggregated without blocking,
we will be able to compare SSEs obtained with and without 2d-tree blocking.
We use the EIA data set [1], which has 4096 records with 11 attributes and has

CHAPTER 3. EXPERIMENTAL RESULTS 11

Figure 3.3: SSE evolution for different values of L and different numbers of
records using k = 3 and the 2d-tree approach before microaggregation

Table 3.2: SSE of the microaggregated data set for k = 3 and 2, 3, 4, 5 and 10
dimensions. The data set has 2.5 million records.

d 2 3 4 5 10

2d-tree 4.55 593.64 7953.22 37269.3 916119
Univ.Block. 4.9 1155.54 21004.5 99876.3 1985030

become a usual reference data set for testing multivariate microaggregation [4, 5,
8]. When MDAV is applied over the entire data set with k = 3 an SSE = 217.38
is obtained. When k = 5 the resulting SSE is 750.21. Table 3.3 shows the SSE
results over this data set using the discussed blocking techniques for different
values of L and k.

Comparing the results in Table 3.3 with the SSE obtained without blocking,
we can see that the univariate blocking is clearly disruptive while our 2d-tree
approach makes the SSE to be worse for k = 3 but improves it for k = 5. This
behavior of SSE can be explained because the EIA data set is known to be
naturally clustered for a k = 5 and the partition that the 2d-tree based blocking
obtains helps MDAV to improve the resulting SSE.

From these results we can conclude that the univariate blocking technique is
more disruptive than the 2d-tree based one. Moreover, in some cases in which

Table 3.3: SSE results for EIA data set (4096 records and d = 11).
L k SSEuniv.block. SSE2d−tree

100 3 663.435 456.846
200 3 503.281 464.589
100 5 1651.86 713.095
200 5 1179.25 734.925

CHAPTER 3. EXPERIMENTAL RESULTS 12

Figure 3.4: SSE evolution for different values of L and different numbers of
records using k = 3 and the univariate blocking approach before microaggrega-
tion

the data set behaves as a clustered data set, 2d-tree-based blocking can help
MDAV to improve SSE.

CHAPTER 3. EXPERIMENTAL RESULTS 13

Figure 3.5: SSE evolution for different d values applied to 2500000 records
with dimensions from 2 to 10, for k = 3. L = 10000 is taken. The continuous
line represents the univariate blocking approach, the dashed line represents the
2d-tree blocking approach.

Chapter 4

Conclusions

We have presented a new blocking method based on 2d-trees to intelligently
dividing a very large data set into blocks prior to a superlinear treatment.

For the case where the treatment is microaggregation, we have shown that
our method outperforms univariate blocking in terms of SSE. Thus, it can be
considered an appropriate tool for microaggregating huge data sets.

Some research lines for a further work remain open:

• Expand the blocking method for non-numerical attributes;

• Find the optimal value of L for a given data set;

• Conduct empirical work to assess the performance of 2d-tree blocking for
other superlinear treatments, like record linkage.

14

Bibliography

[1] R. Brand, J. Domingo-Ferrer, and J. M. Mateo-Sanz. Reference data sets to
test and compare sdc methods for protection of numerical microdata, 2002.
European Project IST-2000-25069 CASC, http://neon.vb.cbs.nl/casc.

[2] W. Cohen and J. Richman. Learning to match and cluster high-dimensional
data sets for data integration. In Proc. of 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 475-480, 2002.

[3] T. T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms.
MIT Press, Cambridge, MA, USA, 1990.

[4] J. Domingo-Ferrer and J. M. Mateo-Sanz. Practical data-oriented microag-
gregation for statistical disclosure control. IEEE Transactions on Knowledge
and Data Engineering, 14(1):189–201, 2002.

[5] J. Domingo-Ferrer, F. Sebé, and A. Solanas. A polynomial-time approxima-
tion to optimal multivariate microaggregation. Computers and Mathematics
with Applications, 55(4): 714–732, 2008.

[6] J. Domingo-Ferrer and V. Torra. Ordinal, continuous and heterogenerous
k-anonymity through microaggregation. Data Mining and Knowledge Dis-
covery, 11(2): 195-212, 2005.

[7] A. Hundepool, A. Van de Wetering, R. Ramaswamy, L. Franconi, A. Capo-
bianchi, P.-P. DeWolf, J. Domingo-Ferrer, V. Torra, R. Brand, and S. Giess-
ing. µ-ARGUS version 4.0 Software and User’s Manual. Statistics Nether-
lands, Voorburg NL, may 2005. http://neon.vb.cbs.nl/casc.

[8] M. Laszlo and S. Mukherjee. Minimum spanning tree partitioning algo-
rithm for microaggregation. IEEE Transactions on Knowledge and Data
Engineering, 17(7):902–911, 2005.

[9] A. McCallum, K. Nigam and L. Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In Proc. of
6th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 169-178, 2000.

15

BIBLIOGRAPHY 16

[10] A. Solanas, A. Mart́ınez-Ballesté, J. Domingo-Ferrer and J. M. Mateo-Sanz.
A 2d-tree-based blocking method for microaggregating very large data sets.
In Proc. of ARES/DAWAM 2006-Dependability Aspects of Data Warehous-
ing and Mining Applications, IEEE Computer Society, pp. 922-928, 2006.

